
Classes in C++
Lecture-2

Declaring and defining a class

• class classname {

 access-specifier

 data and functions

 };

• Access-specifier can be

 public

 private

 protected

Note: - by default functions and data declared are private

Access-specifier (example)

• #include <iostream>

#include <cstring>

using namespace std;

class employee

{ // class begins

char name[80];

public: void putname(char *); void getname(char *) ;

private: double wage;

public: void putwage(double w); double getwage();

}; // class ends here

void employee::putname(char *n)

{ strcpy(name,n); }

void employee::getname(char *n)

{ strcpy(n,name); }

void employee::putwage(double w)

{ wage=w;}

double employee::getwage()

{ return wage; }

int main() { employee ted; char name[80];

ted.putname(“Ted Jones”); ted.putwage(7500);

ted.getname(name);

cout<<name<<“ make $”<<ted.getwage()<<“ per month.” ;

return 0;

} // main closing

Memory allocation of members

• While objects conceptually contain data members and
functions, C++ objects typically contain only data.

• The compiler creates only one copy of the class’s member
functions and shares that copy amongst all the members.

Placing a class in a separate file for
reusability

• benefits of creating class – reusability

• example – C++ standard offers many classes which can be
used by including header files

• How to make our classes reusable?

Placing a class in a separate file for
reusability

• The program file where the class is declared and defined
should not have main() function

• Divide the source code into two parts

• A .cpp file having main() (driver program)

• A .h file having class declaration

 #include <iostream>

#include <cstring>

using namespace std;

class employee

{ // class begins

char name[80];

public: void putname(char *); void getname(char *) ;

private: double wage;

public: void putwage(double w); double getwage();

}; // class ends here

void employee::putname(char *n)

{ strcpy(name,n); }

void employee::getname(char *n)

{ strcpy(n,name); }

void employee::putwage(double w)

{ wage=w;}

double employee::getwage()

{ return wage; }

employee.h

#include <iostream>

#include “employee.h”

int main()

{ employee ted; char

name[80];

ted.putname(“Ted

Jones”);

ted.putwage(7500);

ted.getname(name);

cout<<name<<“ make

$”<<ted.getwage()<

<“ per month.” ;

return 0;

} // main closing

program1.cpp

Preprocessor directive

• The preprocessor directive

#include “employee.h”

• Instructs the C++ preprocessor to replace the directive with a
copy of the contents of employee.h

• employee.h thus becomes re-usable

How header files are located?

• Used “ “ instead of < >

• “ “ preprocessor locates first in current directory

• < > preprocessor locates in standard directory

Problem

• The abstraction problem is partially solved as placing a class
definition in a header file still reveals the entire
implementation of the class as the employee.h is a simple text
file

Ideal situation

• To use an object of a class, client code should know

• What member function to call?

• What arguments to provide?

• What return type to expect?

Separating interface from
implementation

• Interface define and standardize the ways in which things such
as people and systems interact with one another.

• The interface of a class describes what services a class’s
clients can use and how to request those services, but not
how the class carries out the services.

Separating interface from
implementation
• Define member functions outside the class definition, so that

their implementation details can be hidden from the client
code

• Divide the source code into two parts

• A .cpp file having main() (driver program)

• A .h file having class definition

• A .cpp file having member function definition

 #include <iostream>

#include <cstring>

using namespace std;

class employee

{ // class begins

char name[80];

public: void putname(char *); void getname(char *) ;

private: double wage;

public: void putwage(double w); double getwage();

}; // class ends here

employee.h

#include <iostream>

#include “employee.h”

int main()

{ employee ted; char

name[80];

ted.putname(“Ted

Jones”);

ted.putwage(7500);

ted.getname(name);

cout<<name<<“ make

$”<<ted.getwage()<

<“ per month.” ;

return 0;

} // main closing

program1.cpp

#include “employee.h”

void employee::putname(char *n)

{ strcpy(name,n); }

void employee::getname(char *n)

{ strcpy(n,name); }

void employee::putwage(double w)

{ wage=w;}

double employee::getwage() { return wage; }

employee.cpp

Compilation and Linking
process
• Class’s interface and implementation will be created and

complied by one programmer and used by a separate
programmer who implements the class’s client code

• Client is provided with the employee.h and the object code of
employee.cpp (not the source file)

ASSIGNMENT

• What do you mean by Preprocessor directives. Also explain
Header and library files.

